

Spacecraft Pre-launch/Turnaround NDE needs at the Kennedy Space Center

Rick Russell
NASA Materials Science Division

In-Space Non-Destructive Inspection Technology Workshop

March 1, 2012

Houston, TX

NDE included in NASA Roadmaps

Space Technology Roadmaps STR • TABS
TECHNOLOGY AREA BREAKDOWN STRUCTURE

TA12 • MATERIALS, STRUCTURES, MECHANICAL SYSTEMS & MANUFACTURING

CROSS-CUTTING

- Nondestructive Evaluation & Sensors
- Model-Based Certification & Sustainment Methods
- Loads and Environments

Table 22, WBS # 2.5.1 NDE

Table 22. WB5 # 2.5.1 TVDE			
TECHNOLOGY PRODUCT Key Technology/Challenges	What it Enables	Current TRL/Status	Steps to TRL 6
 a. NDE Complex Built-Up Structures Sersors and NDE methodologies for high- fidelity detection and characterization of flaws and degradation in complex built-up structures. 	Assurance of the integrity of complex built-up structures.	TPL2, Viable techniques for inspection of exposed surfaces and inspection following disas- sembly.	Sensors for prognostics and reconstruction techniques for data acquired from limited views of penetrating radiation 2013.
b. Computational NDE Predict the performance of NDE techniques on critical structures/materials.	Rapid development and certifica- tion of inspection techniques for complex composite configura- tions.	TRL2-3, Ultrasonic simulations for homogenous material with inclu- sion of simplified flaws.	Validated simulations of ultra- sonic inspections of composite structures/materials 2016.
c. Combined NDE and Structural Analysis Inclusion of accurate characterizations of damage in structural analysis routines.	Accurate assessment of the impact of damage on structural integrity.	TRL 1-2, Manual inclusion of NDE data into structural analysis routines.	Accurate residual life predictions based using data acquired from NDE 2020.
d. Autonomous Inspection Sensor and Autonomous Inspection (Al) con- trollers that ensure the proper performance and optimization of NDE systems without? human interaction.	Performance of inspections in areas where a human interaction is either not possible, challeng- ing, or too time consuming.	TPL 1-2, Development of systems with simplified human opera- tions.	Sensors and Al systems for large area inspection 2023.
Real-time Comprehensive Diagnostics Methodologies of real-time diagnostics.	Integrity assurance of vehicles for long duration missions.	TRL 2-3, Impact and leak-detec- tion systems for Shuttle orbiter and ISS.	Real-time diagnostic system for detection of fatigue and impact damage. 2025

Excerpt from the NESC Presentation on the "State of the NASA Nondestructive Evaluation (NDE) Discipline" *

- NDE expertise in high demand across all NASA missions
 - Challenge to provide sufficient expertise
 - Multi-Center cooperation key
 - e.g. NESC NDE TDT, NASA NDE Working Group (NNWG), Orbiter NDE Working Group (ONWG)
 - Reduced research capabilities and output lead to risk in meeting future mission requirements
- Many mature NDE technologies challenge applying them to complex aerospace materials and structures
 - Composites, ceramics, TPS, multilayer, multi-functional structures, etc.
- Interaction with other disciplines (materials, structures, etc.) present challenges
 - NDE requirements, expectations, and need to consider NDE in the initial design
- Structural Health Monitoring (SHM) is new frontier with great potential returns
 - Critical for longer duration manned space missions

KSC NDE Vital to Overall NASA NDE Mission

- KSC NDE required to maintain KSC/CCAFS institutional facility
- KSC NDE required to support current customers (customers defined later slide)
- KSC NDE will be required for future customers
 - Beginning with Shuttle Program KSC has historical worked with operations centers (JSC, MSFC) and Research Centers (LaRC, GRC) to develop and implement advanced NDE procedures.
 - Current and future and NASA programs are dependent of KSC to maintain its current core and advanced capabilities

Where we are now: KSC NDE Laboratories

- Institutional (ISC) NDE Primary Services
 - Provide Non-Destructive Testing and Evaluation for the Kennedy Space Center/Air Force Operational Programs and Facilities
 - Examples include
 - Crane hooks
 - Lifting fixtures
 - Pressure vessels
 - Includes operational ground support equipment and flight vehicle hardware.
 - Provides 24/7 support launch site operations customers processing and launching rockets and payloads.
 - The Lab also develops new NDE techniques and equipment to improve evaluation capabilities.

- USA/Hangar N NDE Primary Services
 - Provide Non-Destructive Testing and Evaluation for the Space Shuttle and other KSC Operational Programs
 - Performs inspections in support of space operations and maintenance of multi-purpose space systems
 - Provides NDE Project Engineering for New Technology Development
 - Includes advanced NDE capabilities
 - Flash Infrared Thermography (Orbiter Wing Leading Edge)
 - Terahertz (External Tank)
 - Backscatter x-ray (External Tank)
 - Provide R&D collaboration with the NASA Engineering Safety Center (NESC) NDE Technical Development Team

Some cross linking exists amongst the 2 laboratories – Consolidation plans are currently being discussed

Institutional (ISC) Non-Destructive Examination Laboratory

• Skills and Capabilities

- Eddy Current Testing
- Infrared imaging
- Leak Testing
- Micro-Focus X-Ray
- Magnetic Particle
- Fluorescent Dye Penetrant
- Radiography
 - High Energy X-Ray 420 kV
 - Portable X-Ray and Gamma Sources
 - Computed Tomography (CT)
- Ultrasonic Testing
- Visual
 - Certified Weld Inspection (CWI)
- ASNT-certified Level III engineering consulting

USA/Hangar N Non-Destructive Examination

Laboratory

- Radiography
 - CT
 - Film and Digital
 - Laminography
- Ultrasonic
 - A-Scan, B-Scan, P-Scan
 - 3D CAD UT Modeling
- Flash Thermography imaging
- Shearography Vacuum/Acoustic
- Magnetic Particle
- Fluorescent Dye Penetrant
- Visual
 - CWI, Dimensional, UV Borescope
- Eddy Current
 - MWM, Single/Multi Channel
 - Bolt Hole/Surface
 - Custom Coil
- Terahertz
- Large scale X-Ray Chamber
 - 11-Axis Robot and gantry
- Structural Health Monitoring (IVHM)

Shuttle External Tank Foam Shearography Inspection

P-scan presentation

Materials Science Division Support

- Materials & Processes Engineering
 - Program support (engineering/project management)
 - ESD Composites for Exploration
 - OCT Composites Cryotank
 - R&D
- Applied Physics Lab
 - Program support (applied R&D)
 - R&D
- NASA NDE Working Group (NNWG)
- NESC NDE TDT

Example of Past Projects

Device for making detailed maps of orbiter window defects

Ultrasonic leak locator

Prototype device to indicate H2 leakage or fire at a flanged joint.

Current/Future NDE Customers

- KSC/CCAFS Institution
 - e.g. Pad modifications, cyrotanks, crawler transporter, pressure vessels
- Launch Services Program (LSP)
- 21st Century Launch Program
 - Orion MPCV
 - SLS
- Commercial Cargo
- Commercial Crew

21st Century Launch Complex

- Modernizing the KSC and CCFAS
 - Launch architecture
 - Environmental
 - Payload Processing
 - Range Capabilities
 - Partnering with Air
 Force, State of
 Florida and the FAA

Orion MPCV and SLS

389 ft.

Commercial Crew - Blue Origin

- Developing a Crew Transportation System comprised of a Space Vehicle (SV) which will be launched first on an Atlas V and then on Blue Origin's own Reusable Booster System (RBS)
- Capable of carrying 7 astronauts and will transfer NASA crew and cargo to and from the ISS, serve as an ISS emergency escape vehicle for up to210 days, and perform a land landing to minimize the costs of recovery and reuse.

Commercial Crew - Boeing

- Developing a "full service" system for both NASA and commercial customers to LEO destinations.
- CST-100 spacecraft is configured to carry up to 7 crew members and/or cargo to LEO destinations including ISS and BA Sundancer space complex
- Compatible with multiple launch vehicles
- Designed for land landings and can be reused for up to 10 missions

Commercial Crew - Sierra Nevada

- Developing the Dream Chaser Space System (DCSS).
- Provides LEO access to the ISS and commercial customers needing suborbital services
- Third generation design derived from extensive NASA Langley research providing a reusable, pressurized, lifting-body vehicle that lands on a conventional runway.
- Will most likely utilize an Atlas V launch vehicle

Commercial Crew - SpaceX

- SpaceX's Dragon crew vehicle was the first commercial spacecraft to return from orbit
- Maturation of the Falcon9/Dragon transportation system with a particular focus on developing an integrated Launch Abort System.
- Developing prototypes of the crew cabin, crew seats and restraints, crew control panel and life support system.

So what are KSC's needs?

- The basic infrastructure of NDE support will remain but at a reduced capacity, especially in advanced NDE development
 - Consolidation is still in work
- The new NASA programs and the new commercial customers do not have the "deep pockets" that the Shuttle Program had
 - The challenge for KSC is to maintain a world class NDE organization with less resources
- The NASA Materials Science Division will remain the POC for NDE operations and advance NDE development
 - Key challenge is to forecast future customer needs
 - Examples of a few recent development efforts are on the following charts

Multifunctional Hybrid Composite Metamaterial Systems

- Inspection of damage and subsequent repairs on composite structures which will involve:
 - Develop a Surface Wave propagating (SWP) structure consisting of arrayed sensors (piezoelectric), in conjunction with a passive single chip Radiofrequency Identification (RFID) strain/accelerometer/temp sensor configuration.
 - The goal will be to simultaneously transfer power, and communicate via a wireless network, in order to detect damage and induce or monitor the cure of a repair in a fiber reinforced composite part.
 - Validation of the tools using current NDI/NDE methods
- Repair of materials for primary structures (including newly developed out of autoclave material designed for use on primary structures).
 - Cradle-to-grave monitoring of the repair including monitoring repair cure, the initial quality of repair during installation and continuing the monitoring throughout its lifetime.

 Provide cost-cutting measures for repair of out-of-autoclave composite structures for primary structures through the development of standard repair and monitoring kits

Coupler

Coupler

Coupler

Coupler

Coupler

Coupler

Composite material

Cross-section view

Eddy Current Stress Gages for COPV Health Monitoring

- Utilizes MWM® Technology
 - Goal is to provide a means of directly measuring the stresses at various depths in the overwrap

Eddy Current Stress Gages for COPV Health Monitoring

APL

Wire Detection Systems & Integration

Wire Construction

Materials examined during development of detection layer

- Metal foils
- Nickel coated carbon fiber
- Conductive carbon cloth
- Metallized mylar tapes
- Sputter coated metals
- Electroplated metals
- Printed-on conductive inks
- Inherently conductive polymers

Cross section of RG316 wire with Cu foil and PTFE jacket

Tape wrapped

Extruded FEP

Damage profile for TDR testing